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Errata

 Link to talk: https://youtu.be/F_Riqjdh2oM

 At 0m54s in the talk I claimed quantum annealing and the gate model "might be 

equivalent, but the jury's still out on that"; this statement is not quite correct, and you can 

read more about the topic here.

 At 9m54s in the talk (and in an older version of the slides) I claimed all quantum operators 

are their own inverses; while this is true of all the operators in this presentation, it is not true 

in general.

 At 1h8m25s in the talk I failed to understand a student’s question about how we know the 

entangled qbits decide how they will collapse at time of measurement, rather than 

entanglement; this should have been answered with a reference to Bell test experiments.

https://youtu.be/F_Riqjdh2oM
https://cstheory.stackexchange.com/questions/17703/quantum-annealing-vs-adiabatic-quantum-computation


Changelog

 This presentation has been modified from its original form in the video as follows:

 Added “Classical to Quantum” slide

 Added slide defining superposition, and appendix slide on superposition as linear combination

 In Deutsch Oracle explanation, changed Input/Output labels to Control/Target

 Redid Deutsch Oracle circuit diagrams for additional clarity

 Expanded explanation of entanglement and its relation to Bell test experiments

 Added “Sources” slide crediting material I used to learn & create this presentation

 Fixed bit & gate order issues in entanglement & teleportation slides

 Many other minor stylistic changes



Why learn quantum computing?

 Quantum advantage expected this year

 Microsoft, Google, Intel, IBM all investing in quantum computer development

 Several exciting applications already known

 Efficiently factor large composite numbers, breaking RSA encryption (Shor’s algorithm, 1994)

 Search an unordered list in O( 𝑛) time (Grover’s algorithm, 1996)

 Believed exponential speedup in simulating quantum mechanical systems

 Intellectually interesting – quantum mechanics is outside your intuition!

 Get a small glimpse of what you don’t know you don’t know



Learning objectives

 Representing computation with basic linear algebra (vectors and matrices)

 Qbits, superposition, and quantum logic gates

 The simplest problem where a quantum computer beats a classical computer

 Bonus topics: quantum entanglement and teleportation



Classical to quantum

Classical Computing

• States are bits (0 or 1)

• Gates are Boolean logic operators

0 ∧ 1 = 0 0 ∨ 1 = 1 ¬0 = 1

Quantum Computing

• States are vectors

• Gates are matrices

0 1
1 0

1

0
=

0

1



Representing classical bits as a vector

| ۧ0 =
1

0

One bit with the value 0, also written as | ۧ0 (Dirac vector notation)

One bit with the value 1, also written as | ۧ1

| ۧ1 =
0

1



Review: matrix multiplication

𝑥0 𝑦0
𝑥1 𝑦1

𝑎

𝑏
=

𝑥0𝑎 + 𝑦0𝑏

𝑥1𝑎 + 𝑦1𝑏
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=
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𝑥0 𝑦0 𝑧0 𝑤0

𝑥1 𝑦1 𝑧1 𝑤1

𝑥2
𝑥3

𝑦2
𝑦3

𝑧2 𝑤2

𝑧3 𝑤3

𝑎
𝑏
𝑐
𝑑

=

𝑥0𝑎 + 𝑦0𝑏 + 𝑧0𝑐 + 𝑤0𝑑
𝑥1𝑎 + 𝑦1𝑏 + 𝑧1𝑐 + 𝑤1𝑑
𝑥2𝑎 + 𝑦2𝑏 + 𝑧2𝑐 + 𝑤2𝑑
𝑥3𝑎 + 𝑦3𝑏 + 𝑧3𝑐 + 𝑤3𝑑



Operations on one classical bit (cbit)
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Reversible computing

 Reversible means given the operation and output value, you can find the input value

 For 𝐴𝑥 = 𝑏, given 𝑏 and 𝐴, you can uniquely find 𝑥

 Operations which permute are reversible; operations which erase & overwrite are not

 Identity and Negation are reversible

 Constant-0 and Constant-1 are not reversible

 Quantum computers use only reversible operations, so we will only care about those



Review: tensor product of vectors

𝑥0
𝑥1

⊗
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𝑦1
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𝑥0
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𝑦1

𝑥1
𝑦0
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=
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⊗
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Representing multiple cbits

| ۧ00 =
1

0
⊗

1

0
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1
0
0
0

| ۧ01 =
1

0
⊗
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⊗
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⊗
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1
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0
⊗
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0
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0
0
0
0
1
0
0
0

 We call this tensored representation the product state

 We can factor the product state back into the individual state representation

 The product state of 𝑛 bits is a vector of size 2𝑛



Operations on multiple cbits: CNOT

 Operates on pairs of bits, one of which is the “control” bit and the other the “target” bit

 If the control bit is 1, then the target bit is flipped

 If the control bit is 0, then the target bit is unchanged

 The control bit is always unchanged

 With most-significant bit as control and least-significant bit as target, action is as follows:

𝐶 =

1 0
0 1
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0 1
1 0
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11



Operations on multiple cbits: CNOT
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Operations on multiple cbits: CNOT

𝐶| ۧ00 = 𝐶
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Recap

 We represent classical bits in vector form as 1
0

for 0 and 0
1

for 1

 Operations on bits are represented by matrix multiplication on bit vectors

 Quantum computers only use reversible operations

 Multi-bit states are written as the tensor product of single-bit vectors

 The CNOT gate is a fundamental building block of reversible computing



Qbits and superposition

 Surprise! We’ve actually been using qbits all along!

 The cbit vectors we’ve been using are just special cases of qbit vectors

 A qbit is represented by 𝑎
𝑏

where 𝑎 and 𝑏 are Complex numbers and 𝑎 2 + 𝑏 2 = 1

 The cbit vectors 1
0

and 0
1

fit within this definition

 Don’t worry! For this presentation, we’ll only use familiar Real numbers.

 Example qbit values:
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2
1

2

1
2

3
2

−1

0

1

2
−1

2



Superposition

 When a qbit is in a state other than | ۧ0 or | ۧ1 , we say it is in superposition of | ۧ0 and | ۧ1

 The qbit is in some sense both | ۧ0 and | ۧ1 at the same time

 For the mathematically-inclined, superposition means linear combination



Measurement

 When we measure the qbit, it collapses to an actual value of 0 or 1

 We usually do this at the end of a quantum computation to get the result

 Critical point: measurement compels qbit to collapse to 0 or 1, it was not secretly 0 or 1 already

 If a qbit has value 𝑎
𝑏

it collapses to 0 with probability 𝑎 2 and 1 with probability 𝑏 2

 For example, qbit

1

2
1

2

has a 
1

2

2
=

1

2
chance of collapsing to 0 or 1 (coin flip)

 The qbit 1
0

has a 100% chance of collapsing to 0, and 0
1

has a 100% chance of collapsing to 1



Multiple qbits

 Multiple qbits are similarly represented by the tensor product 𝑎
𝑏
⊗ 𝑐

𝑑
=

𝑎𝑐
𝑎𝑑
𝑏𝑐
𝑏𝑑

 Note that 𝑎𝑐 2 + 𝑎𝑑 2 + 𝑏𝑐 2 + 𝑏𝑑 2 = 1

 For example, the system 

1

2
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⊗

1

2
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2
1

2
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2
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2

(note that 
1

2

2
=

1

4
, and 

1

4
+

1

4
+

1

4
+

1

4
= 1)

 There’s a ¼ chance each of collapsing to ۧ|00 , ۧ|01 , ۧ|10 , or ۧ|11



Operations on qbits

 How do we operate on qbits? The same way we operate on cbits: with matrices!

 All the matrix operators we’ve seen also work on qbits (bit flip, CNOT, etc.)

 Matrix operators model the effect of some device which manipulates qbit

spin/polarization without measuring and collapsing it

0 1
1 0

1
2

3
2

=

3
2
1
2

 There are several important matrix operators which only make sense in a quantum context



The Hadamard gate

 The Hadamard gate takes a 0- or 1-bit and puts it into exactly equal superposition

𝐻 ۧ|0 =
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2
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=
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2
1
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1
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2
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2
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2

0

1
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2
−1
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The Hadamard gate

 The Hadamard gate also takes a qbit in equal superposition back into a 0- or 1-bit!

1
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2

1

2
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2
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2
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2

=
0

1

 We can transition out of superposition without measurement!

 We can thus structure quantum computation deterministically instead of probabilistically



The unit circle state machine
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The unit circle state machine

1
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Recap

 Cbits are just a special case of qbits, which are 2-vectors of Complex numbers

 Qbits can be in superposition, and are probabilistically collapsed to cbits by measurement

 Multi-qbit systems are tensor products of single-qbit systems, like with cbits

 Matrices represent operations on qbits, same as with cbits

 The Hadamard gate takes 0- and 1-bits to equal superposition, and back

 We can think of qbits and their operations as forming a state machine on the unit circle

 Actually the unit sphere if we use complex numbers



The Deutsch oracle

 Imagine someone gives you a black box containing a function on one bit

 Recall! What are the four possible functions on one bit?

 You don’t know which function is inside the box, but can try inputs and see outputs

 How many queries would it take to determine the function on a classical computer?

 How many on a quantum computer?



The Deutsch oracle

 What if you want to check whether the unknown function is constant, or variable?

 Constant-0 & constant-1 are constant, identity & negation are variable

 How many queries would it take on a classical computer?

 How many on a quantum computer?



The Deutsch oracle

 How can it be done in a single query!? Superposition!

 First, we must define what each of the four functions look like on a quantum computer

 We have an immediate problem with the constant functions



Reversable-izing non-reversible functions

 We often need to compute non-reversible functions on quantum computers

 There is a standard solution! Consider non-reversible function 𝑓:

BB

Target

Control
ۧ|x

| ۧy | ۧy ⊕ 𝑓(| ۧx )

ۧ|x

BB

Target

Control
ۧ|x

| ۧ0 | ۧ𝑓(| ۧx )

ۧ|x

 We xor the function output with the target qbit, leaving the control qbit unchanged

 Think of the target qbit as an out-parameter for the function 𝑓



The Deutsch oracle: constant-0

Control

Target

ۧ|x

| ۧ0

| ۧx

| ۧ0

BB



The Deutsch oracle: constant-1

Control

Target

ۧ|x

| ۧ0

| ۧx

| ۧ1

BB

X



The Deutsch oracle: identity

Control

Target

ۧ|x

| ۧ0

| ۧx

| ۧx

BB



The Deutsch oracle: negation

Control

Target

ۧ|x

| ۧ0

| ۧx

| ۧ¬x

BB

X



The Deutsch oracle

 How do we solve it on a quantum computer in one query?

 If the black-box function is constant, system will be in state ۧ|11 after measurement

 If the black-box function is variable, system will be in state ۧ|01 after measurement

X

X

H

H
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H

H

ۧ|0

ۧ|0
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Target



The Deutsch oracle: preprocessing 
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The Deutsch oracle: constant-0
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The Deutsch oracle: constant-0
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The Deutsch oracle: constant-1
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The Deutsch oracle: constant-1
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The Deutsch oracle: identity
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The Deutsch oracle: identity 
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The Deutsch oracle: identity
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The Deutsch oracle: negation
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The Deutsch oracle: negation 
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The Deutsch oracle

 We did it! We determined whether the function was constant or variable in a single query!

 Intuition: the difference within the categories (negation) was neutralized, while the 

difference between the categories (CNOT) was magnified

 This problem seems pretty contrived (and it was, when it was published)

 A generalized version with an n-bit black box also exists (Deutsch-Josza problem)

 Determine whether the function returns the same value for all 2𝑛 inputs (i.e. is constant)

 A variant of the generalized version was an inspiration for Shor’s algorithm!



Full recap

 We learned how to model classical computation with basic linear algebra

 We learned about qbits, superposition, and the Hadamard gate

 We learned the Deutsch Oracle problem, where quantum outperforms classical



Bonus topics

 Quantum entanglement

 Quantum teleportation



Entanglement

 If the product state of two qbits cannot be factored, they are said to be entangled

1

2
0
0
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2

=
𝑎

𝑏
⊗

𝑐

𝑑

𝑎𝑐 =
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2
𝑎𝑑 = 0
𝑏𝑐 = 0

𝑏𝑑 =
1

2

 The system of equations has no solution, so we cannot factor the quantum state!

 This has a 50% chance of collapsing to ۧ|00 and 50% chance of collapsing to ۧ|11



Entanglement

How can we reach an entangled state? Easy!

𝐶𝐻1
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Entanglement

 What’s going on here? The qbits seem to be coordinating in some way

 Measuring one qbit also collapses the other in a correlated state

 This coordination happens even across vast stretches of space

 The coordination even happens faster than the speed of light! It is instantaneous.

 Entanglement breaks locality through faster-than-light coordination

 However – and this is the critical part – no information can be communicated



Entanglement

 Surely the qbits just decided at time of entanglement how they would collapse?

 This is called a “local hidden variable” theory, since the qbits carry information with them

 In 1964, John Bell proposed an experiment to differentiate between decide-at-

entanglement and decide-at-collapse theories; these are called Bell test experiments

 All such experiments have come down firmly against local hidden variables

 Locality is a lie; our universe’s physics is fundamentally nonlocal



Teleportation

 Quantum teleportation is the process by which the state of an arbitrary qbit is transferred 

from one location to another by way of two other entangled qbits

 You can transfer qbit states (cut & paste) but you cannot clone them (copy & paste)

 This is called the No-cloning theorem

 The teleportation is not faster-than-light, because some classical information must be sent



Teleportation

| ۧψ

𝐴

𝐵

H

H

Z
| ۧψ

ۧ|0

ۧ|0
X

𝑍 =
1 0
0 −1

𝑇



Sources

Prof. Umesh Vazirani

CS191x MOOC



Further learning goals

 Deutsch-Jozsa algorithm and Simon’s periodicity problem

 Former yields oracle separation between EQP and P, latter between BQP and BPP

 Shor’s algorithm and Grover’s algorithm

 Quantum cryptographic key exchange

 How qbits, gates, and measurement are actually implemented

 Quantum error correction

 Quantum programming language design



Further reading

 Recommended textbook: Quantum Computing for Computer Scientists

 Others have recommended Quantum Computing: A Gentle Introduction

 For those with heavier math backgrounds, Quantum Computer Science: An Introduction

 The Microsoft Quantum Development Kit docs are nice [link]

 The development kit contains a quantum computer simulator!

 Exercise: implement the Deutsch Oracle tester in Q#

 Some skepticism about physically-realizable quantum computers [link]

 Noise might increase exponentially with the number of physical qbits

https://docs.microsoft.com/en-us/quantum/quantum-concepts-1-intro?view=qsharp-preview
https://www.quantamagazine.org/gil-kalais-argument-against-quantum-computers-20180207/


Appendices

 Mathematical definition of superposition

 Single-bit operations on multi-bit states

 Quantum teleportation math



Superposition as linear combination

 When a qbit is not in state | ۧ0 or | ۧ1 , we say it is in superposition of | ۧ0 and | ۧ1

 | ۧ0 and | ۧ1 are basis vectors

 Superposition means linear combination of some basis vectors

𝑎

𝑏
= 𝑎

1

0
+ 𝑏

0

1
= 𝑎| ۧ0 + 𝑏| ۧ1



Review: matrix multiplication associativity

𝐴𝐵 𝑥 = 𝐴(𝐵𝑥)
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0 1
1 0

𝑎

𝑏
=
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=
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𝑎

𝑏
=

𝑎

𝑏

You only have to care about the cumulative effect of a series of gates; the specific 

sequence changes nothing.

(𝐻𝑋𝐻)𝑥 = 𝑍𝑥
1

2
1 1
1 −1

0 1
1 0

1 1
1 −1

𝛼

𝛽
=

1 0
0 −1

𝛼

𝛽

1

2
1 1
1 −1

1 −1
1 1

𝛼

𝛽
=

𝛼

−𝛽

1 0
0 −1

𝛼

𝛽
=

𝛼

−𝛽

𝛼

−𝛽
=

𝛼

−𝛽



Review: tensor product of matrices

𝑎 𝑏
𝑐 𝑑

⊗
𝑤 𝑥
𝑦 𝑧 =

𝑎
𝑤 𝑥
𝑦 𝑧 𝑏

𝑤 𝑥
𝑦 𝑧

𝑐
𝑤 𝑥
𝑦 𝑧 𝑑

𝑤 𝑥
𝑦 𝑧

=

𝑎𝑤 𝑎𝑥
𝑎𝑦 𝑎𝑧

𝑏𝑤 𝑏𝑥
𝑏𝑦 𝑏𝑧

𝑐𝑤 𝑐𝑥
𝑐𝑦 𝑐𝑧

𝑑𝑤 𝑑𝑥
𝑑𝑦 𝑑𝑧

0 1
1 0

⊗
1 0
0 1

=
0

1 0
0 1

1
1 0
0 1

1
1 0
0 1

0
1 0
0 1

=

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0



Single-bit operations on multi-bit states

 When applying gates to multi-bit states, we want to specify which qbit we’re modifying

 We use subscripts to identify the qbit

 The subscript value is the power of 2 associated with the significance of that qbit

 So 0, 1, 2, 3, 4, etc. since any binary number is written as 𝛼02
0 + 𝛼12

1 + 𝛼22
2 +⋯

 So 𝑋2 refers to the bit-flip operator which flips the most-significant qbit in a 3-qbit system



Single-bit operations on multi-bit states

What if we want to operate on a single bit in the product state? What matrix do we use?

Example - flip the least-significant bit:

𝑋0 ۧ|01 =
1 0
0 1

⊗
0 1
1 0

0
1
0
0

=

0 1
1 0

0 0
0 0

0 0
0 0

0 1
1 0

0
1
0
0

=

1
0
0
0

= ۧ|00

The operation we want is tensored with the identity matrix, in the position matching the 

significance of that bit.



Single-bit operations on multi-bit states

We can also tensor multiple one-bit operators together to operate on bits in parallel.

Example – flip both bits:

𝑋1𝑋0 ۧ|01 =
0 1
1 0

⊗
0 1
1 0

0
1
0
0

=

0 0
0 0

0 1
1 0

0 1
1 0

0 0
0 0

0
1
0
0

=

0
0
1
0

= ۧ|10

Many useful operators are products of one-bit operators, but some (like CNOT) cannot be 

factored that way.



Single-bit operations on multi-bit states

 CNOT gate subscripts are of the form 𝐶𝑐𝑡 where 𝑐 specifies control bit and 𝑡 target bit

 We can tensor CNOT matrices with the identity to operate on adjacent bits out of multiple

 Throughout the presentation, the CNOT gate we used was 𝐶10

 The 𝐶01 gate (with least-significant bit as control and most-significant target) is as follows:

𝐶01 =

1 0
0 0

0 0
0 1

0 0
0 1

1 0
0 0

00

01

10

11

00

01

10

11



Quantum teleportation math

| ۧψ

𝐴

𝐵

H

H

Z
| ۧψ

ۧ|0

ۧ|0
X

𝑍 =
1 0
0 −1

𝑇



Quantum teleportation math

𝐻2𝐶21𝐶10𝐻1
𝛼

𝛽
⊗

1

0
⊗

1

0
= 𝐻2𝐶21𝐶10

𝛼

𝛽
⊗

1

2
1

2

⊗
1

0

= 𝐻2𝐶21
𝛼

𝛽
⊗

1

2
0
0
1

2

= 𝐻2
1

2

𝛼
0
0
𝛼
0
𝛽
𝛽
0

=
1

2

𝛼
𝛽
𝛽
𝛼
𝛼
−𝛽
−𝛽
𝛼



Quantum teleportation math

1

2

𝛼
𝛽
𝛽
𝛼
𝛼
−𝛽
−𝛽
𝛼

=
1

2
|0 ۧ0

𝛼
𝛽 + ۧ|01

𝛽
𝛼

+ | ۧ10
𝛼
−𝛽 + | ۧ11

−𝛽
𝛼

The state right before measurement breaks down into four cases:

When Alice measures her two qbits, Bob’s qbit is forced into one of four states.

The bits measured by Alice determine the state into which Bob’s qbit was forced.

Bob needs to apply a transformation to get his qbit to the state that he wants.

Bob needs to know the values of Alice’s bits to know which transformation(s) to apply.

|0 ۧ0

|0 ۧ1

|1 ۧ0

| ۧ11

𝛼
𝛽

𝛽
𝛼
𝛼
−𝛽

−𝛽
𝛼



Quantum teleportation math

If Alice measured: Then Bob has: So Bob must apply:

|0 ۧ0
𝛼
𝛽 𝐼

𝛼
𝛽 =

1 0
0 1

𝛼
𝛽 =

𝛼
𝛽

|0 ۧ1 𝛽
𝛼

𝑋
𝛽
𝛼

=
0 1
1 0

𝛽
𝛼

=
𝛼
𝛽

| ۧ10
𝛼
−𝛽 𝑍

𝛼
−𝛽 =

1 0
0 −1

𝛼
−𝛽 =

𝛼
𝛽

|1 ۧ1 −𝛽
𝛼

𝑍𝑋
−𝛽
𝛼

=
1 0
0 −1

0 1
1 0

−𝛽
𝛼

=
𝛼
𝛽

Most-significant bit controls whether 𝑍 gate is applied, least-significant controls 𝑋 gate.


