
Semantic Highlighting in TLA+

How to create modern user-assistive language tooling using tree-sitter

Web demo: https://tlaplus-community.github.io/tree-sitter-tlaplus/
Repo: https://github.com/tlaplus-community/tree-sitter-tlaplus

Andrew Helwer
https://ahelwer.ca

consulting@disjunctive.llc

2

What can you do with real-time access to the TLA+ parse tree?
(source_file (module (header_line) (identifier) (header_line)

 (constant_declaration (identifier) (identifier) (identifier))

 (variable_declaration (identifier) (identifier))

 (operator_definition (identifier) (def_eq)

 (bound_infix_op (identifier_ref) (in)

 (set_of_functions

 (identifier_ref) (maps_to)

 (set_of_functions

 (identifier_ref) (maps_to) (identifier_ref)

)

)

)

)

(double_line)))

3

Tree-Sitter Grammar Capabilities

● Error recovery
● Fast incremental parsing
● Tree queries
● Standalone library
● Bindings for many languages
● Standardized API – and there are tree-sitter grammars for many languages!

4

Tree-Sitter Grammars vs. Language Servers

Language servers:
● Standardized LSP capability-based API (get reference, go to definition, etc.)
● Written in any language, framework, runtime, etc.
● LSP clients built into many platforms (VS Code, Neovim, Eclipse, Emacs)

Tree-Sitter grammars:
● Standardized API for parse/edit/update, tree query, and tree traversal
● Generated C code from DSL, plus C/C++ external scanner
● Supported by fewer platforms so far (Neovim, GitHub)
● People have built very interesting apps that consume tree-sitter grammars!

5

Some Ideas

● Semantic highlighting
“Syntax highlighting is a waste of an information channel” – Hillel Wayne

● Code folding
● Symbol/reference finding
● Code analysis/linting/transformation tools
● Accessibility: coding via alternative input methods

https://github.com/pokey/cursorless-vscode

6

Highlighting

● Conventional syntax highlighting uses regular expressions
● Tree-sitter enables exposing semantic information via highlighting

• the ∈ in ∈x Nat can be highlighted differently from the one in ∀ ∈ x Nat : …

● Identifiers can be highlighted based on what sort of thing they refer to
● Conjunction/disjunction lists can be given “rainbow” highlighting
● Can highlight expressions of the form ∉other CHOOSE v : v S
● All powered by tree queries!

7

How Highlighting Works

[1,10]-[1, 13] @constant
[1,15]-[1-20] @constant
[1,22]-[1,26] @constant
[2,9]-[2,14] @variable
[4,0]-[4,6] @operator
...

8

Tree Queries
(source_file (module (header_line) (identifier) (header_line)

 (constant_declaration (identifier) (identifier) (identifier))

 (variable_declaration (identifier) (identifier))

 (operator_definition name: (identifier) (def_eq)

 (bound_infix_op (identifier_ref) (in)

 (set_of_functions

 (identifier_ref) (maps_to)

 (set_of_functions

 (identifier_ref) (maps_to) (identifier_ref)

)

)

)

)

(double_line)))

(operator_definition name: (identifier) @operator)

9

Tree Queries

Basic node match: (node_name) @capture_name

Match node with child: (operator_definition definition: (conj_list)) @capture

Negation, quantification, wildcards, predicates, etc.

https://tree-sitter.github.io/tree-sitter/using-parsers#pattern-matching-with-queries

It’s really easy to define highlighting based on captures!

10

Consuming the Grammar

Official bindings available for Python, TypeScript/JavaScript, Rust, and C/C++

Many other unofficial bindings to be found

Grammar available as NPM module, Rust crate, and as download from GitHub

https://github.com/tlaplus-community/tlaplus-tool-dev-examples

11

How can I actually use the grammar today?

Install Neovim

Install/enable nvim-treesitter plugin

:TSInstall tlaplus

Open any .tla file in nvim

12

Unicode TLA+

Benefits:
● Get to see all the beautiful math symbols as you’re writing the spec!

Drawbacks:
● Requires care in choice of font
● SANY/TLC don’t support it (Ron Pressler has worked on this)
● Tricky to convert between ASCII & Unicode TLA+ specs

https://github.com/tlaplus-community/tlaplus-standard/tree/main/unicode

https://github.com/tlaplus-community/tlaplus-nvim-plugin

13

Fun nooks & crannies to the TLA+ language

● The block comment start token (* is a valid character sequence in the language
● Passing multiplication operator as a parameter to another operator, as in f(*)

● You can define values in binary, octal, or hex with \b0101, \o5678, \hF85A
● You can define RECURSIVE operators inside LET/IN constructs
● You can use LET/IN constructs anywhere you can have an expression
● You can “destructure” tuples, as in ⟨ ⟩ ∈f[a,b,c Nat×Nat×Nat] a
● Complicated ambiguity with the (+) infix operator; what does f (+) g mean?
● Ability to refer to sub-expressions of larger expressions
● You can write <= as =<

14

The experience of writing a TLA+ parser

Conjunction/disjunction lists are difficult to parse!

Proofs are also difficult to parse!

CASE constructs are difficult to parse!

I started out thinking TLA+ was a small language, but actually it is complicated!

15

How can you contribute?

Add your specs to https://github.com/tlaplus/examples

Build development tools using the grammar, file bugs/feature requests/etc.

16

Possible Future Work – consulting@disjunctive.llc

PlusCal tree-sitter grammar
● 1-2 months
● Tree-Sitter can handle multiple languages in a single file

TLA+ language server using the grammar
● 4-6 months
● Bring standardized language extension functionality to many platforms

Full alternative TLA+ parser & interpreter
● 1 year
● Having multiple language implementations is very healthy!

